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the MH4 biosynthetic pathway resulted in the elevation of 
tyrosine production up to 401  mg/L in shake flasks. This 
work demonstrated a novel approach to tyrosine production 
and verified the possibility to alleviate feedback inhibition 
by creating a phenylalanine sink.
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In recent years, the increasing demand for amino acids in 
the industries such as health food, animal feed, dietary sup-
plements and cosmetics promoted the expansion of their 
market [3]. Tyrosine is an aromatic amino acid which serves 
not only as a protein building block, but also as the biosyn-
thetic intermediate of the neurotransmitter dopamine [3]. 
Moreover, tyrosine is the precursor of p-hydroxystyrene 
and p-hydroxycinnamic acid, both of which can be used for 
the manufacture of novel materials, pharmaceuticals and 
nutraceuticals [11, 12]. Although tyrosine can be naturally 
biosynthesized through the shikimate pathway in Escheri-
chia coli, the feedback inhibition mechanisms by 3-deoxy-
d-arabino-heptulosonate-7-phosphate synthase (AroG) and 
chorismate mutase-prephenate dehydrogenase (TyrA) in 
combination with the TyrR-mediated transcriptional regu-
lation usually prevent the accumulation of aromatic amino 
acids and strictly control them at very low concentrations 
in the cultures [12, 13]. To achieve the production of tyros-
ine by microorganisms, one of the commonly used rational 
strategies is to eliminate the intrinsic feedback inhibition 
by employing feedback inhibition-resistant (FBR) enzyme 
variants. For example, over-expression of the FBR vari-
ants of AroG and TyrA led to the deregulation of tyrosine 
biosynthesis and the high-level accumulation of tyrosine 
[6, 12]. Another study reported that the employment of an 
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FBR cyclohexadienyl dehydrogenase (TyrC) from Zymo-
monas mobilis and the chorismate mutase domain from 
native chorismate mutase-prephenate dehydratase (PheA-
CM) improved the yield of tyrosine in E. coli [4]. Moreo-
ver, elevation of the availability of erythrose-4-phosphate 
(E4P) and phosphoenolpyruvate (PEP), the two precursors 
of the shikimate pathway, by over-expressing PpsA and 
TktA can further increase the tyrosine production [6, 12]. 
Recently, a study on modular engineering of tyrosine bio-
synthetic pathway involving a total of 11 genes allowed the 
yield to reach 80 % of the theoretical maximum yield [7].

In this work, we developed a new approach to produce 
tyrosine in E. coli by expressing a bacterial phenylalanine 
4-hydroxylase (P4H) which can convert phenylalanine into 
tyrosine and bypass the intrinsic feedback inhibition. In 
fact, P4Hs belong to the class of pterin-dependent aromatic 
amino acid hydroxylases (AAAHs) which were widely 
identified and extensively studied in human and animals, 
because of their connections to phenylketonuria, Parkin-
son’s disease, and neuropsychiatric disorders [15]. These 
AAAHs usually utilize tetrahydrobiopterin (BH4) as the 
coenzyme. Additionally, several P4Hs have also been iden-
tified in some bacteria, e.g., Chromobacterium [8]. Recent 
studies suggested that bacterial P4Hs may utilize tetrahyd-
romonapterin (MH4) rather than BH4 as the native pterin 
coenzyme [14]. Interestingly, MH4 is a native metabolite in 
E. coli; however, its function has not been determined [14]. 

In our previous work, prokaryotic P4H activity was recon-
stituted in E. coli by introducing a MH4 recycling mecha-
nism. Moreover, bioprospecting of P4Hs from different 
microorganisms allowed the identification of the most effi-
cient homolog from Xanthomonas campestris [9]. On this 
basis, we hypothesized that if phenylalanine can be contin-
uously depleted by the action of P4H, feedback inhibition 
effects may be alleviated, leading to the accumulation of 
tyrosine. To test this hypothesis, a wild-type E. coli strain 
BW25113 was transformed with pZE-XcABM to express 
the P4H from X. campestris in combination with the MH4 
recycling enzymes (pterin 4a-carbinolamine dehydratase 
from Pseudomonas aeruginosa and dihydromonapterin 
reductase from E. coli) (Fig. 1). As we expected, the result-
ing strain (JH7) was able to accumulate 262 mg/L of tyros-
ine in the cultures after 48 h cultivation (all the plasmids 
and strains are listed in Table 1). The production followed 
the growth-dependent pattern, similar to that of other aro-
matic compounds (Fig.  2a). At 72  h, we observed the 
decrease in both the cell density and tyrosine titer, prob-
ably due to the tyrosine consumption during stationary and 
death phases. On the contrary, the control strain (BW25113 
carrying the blank plasmid pZE12-luc) did not show detect-
able accumulation of tyrosine at any time, suggesting that 
continuous conversion of phenylalanine into tyrosine may 
have created a phenylalanine sink and therefore circum-
vented feedback inhibition.

Fig. 1   A novel artificial pathway for the biosynthesis of tyrosine 
in E. coli. E4P, erythrose-4-phosphate; PEP, phosphoenolpyruvate; 
DAHP, 3-deoxy-D-arabino-heptulosonate-7-phosphate. The genes 
encode: ppsA, phosphoenolpyruvate synthase; tktA, transketolase A; 

aroG, DAHP synthase; aroL, shikimate kinase; phhA, prokaryotic 
phenylalanine 4-hydroxylase; phhB, pterin 4a-carbinolamine dehy-
dratase; folM, dihydromonapterin reductase; mtrA, GTP cyclohydro-
lase I; folX, dihydromonapterin reductase
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Table 1   Plasmids and strains used in this study

Description Source

Plasmids

 pZE12-luc PLlacO1, colE ori, luc, Ampr [9]

 pCS27 PLlacO1, P15A ori, Kanr [9]

 pZE-XcABM pZE12-luc containing phhA from X. campetris ATCC 33913, phhB from P. aeruginosa PAO1, and folM from  
E. coli MG1655

[9]

 pCS-APTA pCS27 containing aroL, ppsA, tktA, aroGfbr from E. coli MG1655 [10]

 pCS-APTA-AX pCS27 containing aroL, ppsA, tktA, aroGfbr and folX from E. coli MG1655; mtrA from B. subtilis This study

 pCS-AX pCS27 containing mtrA from B. subtilis and folX from E. coli MG1655 This study

Strains

 JH7 E. coli BW25113 with plasmid pZE-XcABM This study

 JH8 E. coli BW25113 with plasmid pZE-XcABM and pCS-APTA-AX This study

 JH9 E. coli BW25113 with plasmid pZE-XcABM and pCS-AX This study

 JH10 E. coli BW25113 with plasmid pZE-XcABM and pCS-APTA This study

 JH18 E. coli BW25113 with plasmid pCS-AX This study

 JH19 E. coli BW25113 with plasmid pCS-APTA This study

Fig. 2   Microbial production of tyrosine by the engineered E. coli 
strains and the modular structure of the constructed plasmids. a The 
production of tyrosine and cell concentrations by JH7; b the produc-

tion of tyrosine by JH10 and JH19; c the production of tyrosine and 
cell concentrations by JH8; d gene organization of the four modules: 
ABM, APTA, AX and APTA-AX, respectively
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For strain JH7, we speculated that two possible bottle-
necks might have constrained the tyrosine production. First, 
the low carbon flux in the native shikimate pathway may be 
a limiting factor for precursor supply. Second, the intracel-
lular concentration of native MH4 coenzyme may not be 
sufficiently high to fully support the function of P4H. To 
examine first possible limitation, we employed a previ-
ously constructed chorismate-boosting plasmid pCS-APTA 
expressing the major rate-limiting enzymes associated with 
the shikimate pathway, including AroL, PpsA, TktA, and 
the feedback inhibition resistant mutant of AroG (AroGfbr) 
[10]. When pCS-APTA and pZE-XcABM were co-trans-
ferred into E. coli BW25113, the resulting strain (JH10) 
was able to produce 320  mg/L tyrosine in 48  h (22  % 
increase compared with JH7), and finally to 340  mg/L in 
72 h (Fig. 2b). However, to our surprise, the control strain 
JH19 (E. coli BW25113 carrying pCS-APTA only) can 
also accumulate tyrosine at 165 mg/L in 48 h and 181 mg/L 
in 72  h (Fig.  2b), indicating that this portion of tyrosine 
was produced through the native producing pathway due to 
the enhancement of carbon flux into the shikimate pathway 
rather than the hydroxylation of phenylalanine. We inferred 
that the boosted carbon flux into the shikimate pathway 
might have exceeded the feedback inhibition capacity of 
TyrA, resulting in tyrosine accumulation (Fig. 1).

In addition, we also evaluated the effect of MH4 avail-
ability on the tyrosine production. Although the function of 
MH4 is still unknown, its biosynthetic pathway has been 
proposed. GTP cyclohydrolase (encoded by folE) and dihy-
dromonapterin reductase (encoded by folX) catalyze the 
two critical steps in the proposed pathway [2, 14]. Since 
it has been reported that the MtrA from Bacillus subtilis 
is more efficient than E. coli FolE [2], plasmid pCS-AX 
carrying mtrA from B. subtilis and folX from E. coli was 
constructed in order to enhance the supply of MH4. How-
ever, when pCS-AX and pZE-XcABM were simultane-
ously introduced into E. coli BW25113 as strain JH9, the 
tyrosine production was not improved compared with JH7. 
Strain JH9 can only produce around 80 mg/L in 48 h. We 
speculated that the effect of MH4 enrichment might not be 
significant unless the shikimate pathway is boosted at the 
same time. Therefore, a plasmid carrying both APTA and 
AX modules (pCS-APTA-AX) was constructed to boost 
the supply of MH4 and chorismate simultaneously. When 
pZE-XcABM and pCS-APTA-AX were co-transferred 
into E. coli (JH8), a further increase in tyrosine titer up 
to 401 mg/L was achieved (Fig. 2c), equivalent to a 53 % 
increase compared with JH7. Meanwhile, another control 
strain JH18 (E. coli carrying pCS-AX only) was tested. By 
the end of 72 h, no tyrosine accumulation was detected as 
expected. The gene organization of all the expression cas-
settes used in this study is shown in Fig. 2d.

During the past decades, the development of metabolic 
engineering allowed a number of valuable molecules to 
be manufactured [1, 5]. Although microbial production of 
tyrosine has been extensively studied, this work reported 
a novel strategy distinct from the conventional ones. We 
found that the action of P4H in combination with the MH4 
recycling system can continuously convert phenylalanine 
into tyrosine. During this process, a phenylalanine sink was 
created and the carbon flux diverted to tyrosine produc-
tion. As the result, 401 mg/L of tyrosine was obtained by 
the engineered E. coli strain in the shake flask experiments. 
This work demonstrated a novel approach for tyrosine pro-
duction, verified the possibility to alleviate feedback inhi-
bition by creating a sink of phenylalanine, and suggested 
a novel strategy to overcome the constraint of metabolic 
regulation, which is applicable for the microbial production 
of many other metabolites than tyrosine.
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